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ABSTRACT

This paper is concerned with iterative procedures for the monotone corn-

plementarity problem. Our iterative methods consist of finding fixed points

of appropriate continuous maps. In the case of the linear complementarity

problem, it is shown that the problem is solvable if and only if the sequence

of iterates is bounded in which case summability methods are used to find a

solution of the problem. This procedure is then used to find a solution of the

nonlinear compler,.antarity problem satisfying certain regularity conditions

for which the problem has a nonempty bounded solution set.
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SIGNIFICANCE AND EXPLANATION

Fixed point iterative procedures are defined which use summability the-

ory for the solution of the monotone complementarity problem. Mangasarian

& McLinden have established the existence and boundedness of solution set

under certain regularity conditions. In this paper we provide a constructive

procedure to obtain a solution under these conditions.
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FIXED POINT METHODS

FOR THE COMPLEMENTARITY PROBLEM

P. K. Subramanian

1. Introduction

We are concerned in this paper with the complementarity problem, viz., that

of finding a z. (if it exists) such that F(z,) > 0 and such that z"F(zo) = 0.

Here F is an operator from R' to R . In particular, we are concerned

with the case when F is monotone, that is

(x - y)T (F(x) - F(y)) >0 Vx, y E R .

The operator F is strongly monotone if there exists a positive real number

such that

(x - y)T (F(x) - F(y)) _ AIx - yil.

When F is an affine map, F(x) = Mx+q, we shall refer to the complementar-

ity problem as the linear complementarity problem and write LCP(M, q) in

this case. Otherwise we shall refer to the complementarity problem as the

Sponsored by the United States Army under Contract No. DAAG29-

80-C-0041. This material is based on work sponsored by the National Science

Foundation Grants DCR-8420963 and MCS-8102684.
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In the case of LCP(M, q), when M is positive semidefinite, if the prob-

lem is feasible, that is there exists x > 0 such that Mx + q > 0, the problem

is solvable [Eaves, 1971]. This is not the case for NLCP(F) ([Megiddo,

1977], [Garcia., 1977]). However, for c > 0, if we consider the Tihonov reg-

ularization F, := F + eI then the corresponding problem NLCP(F) has a

unique solution since F, is strongly monotone [Karamardian, 19721. When

E -- 0, then xc, the solution of NLCP(F4), converges to the least two-norm

solution of NLCP(F) , provided NLCP(F) is solvable [Brezis, 1973].

A solution of NLCP(F) is also a fixed point of the map

x - (x - F(x))+ := max f0, x - F(x)}.

The principal aim of this paper is to consider iterative procedures to find such

fixed points. We shall show that in the linear case the sequence of iterates

is bounded if and only if LCP(M, q) is solvable. When this is the case, we

use summability methods to obtain a solution of the problem. Although

feasibility of the monotone NLCP(F) does not imply its solvability, it is a

theorem of Mangasarian & McLinden [1985] that when a regularity condition

such as the distribute Slater constraint qualification is satisfied then the

solution set is bounded. We show how the iterative procedure for the linear

case may be adapted to find a solution in this special case.

We briefly describe the notation used in this paper. We use Rn for the

* space of real ordered n-tuples. All vectors are column vectors and we use the

Euclidean norm throughout. Given a vector x, we denote its ith component

4* %

.4 ................................................................................
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by xz. We say x > 0 if x i  0 Vi. The nonnegative orthant is denoted by

We use superscripts to distinguish between vectors, e.g., x1, x2 etc. For

x. y e R xT indicates the transpose of x, XTy their inner product. Occa-

sionally. the superscript T will be suppressed. All matrices are indicated by

upper case letters A, B, C etc. The ith row of A is denoted by A, while its

jthcolumn is denoted by A.,. The transpose of A is denoted by AT.

Given NLCP(F) , we define the feasible set and solution set by S(F)

and 9(F) respectively, that is,

S(F) = IxER : F +)E '

-(F) = (x E S(F) : xTF(x) = 0}.

In the case of LCP(M, q), we shall denote these sets by S(M, q) and 9(M, q)

respectively. Finally the end of a proof is signified by |.

2. Fixed point methods

We begin with the well known notion of a contraction mapping.

2.1 Definition. Let P : D C R' -* . We say P is Lipschitzian with

modulus L > 0 if

IP(x) - P(y)I' < L iz - yj! Vx, y E D.

When L < I (L < 1) we say P is non-expansive (contractive)

The following Theorem is classical; see e.g., [Ortega and Rheinboldt,

1970, page 120].

.'p

4P Az ' % - . . . , . - . % o . . . % . . .-. . .. - . ,, . . • -p * ¢ -.- o .
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2.2 Theorem. (Banach's contraction mapping princple). Let P: D C

Rn - Rn and let Do be a closed subset of D such that PDo = {P(X)

x E D, } C Do. If P is a contraction mapping on Do with modulus L, then

P has a unique fixed point i in Do. Further, for any point x ° in Do,, the

sequence {xk} where Xk+1 = p(Xk), converges to Y with the following linear

rate

ilxk+l - < L.

ItXk - Ill -

The content of the following proposition is well known. We state it in

following form for later use and furnish a proof for the sake of completeness.

2.3 Proposition. Let F: D C Y n -R - R be monotone and Lipschitzian

with modulus L. Suppose that c > 0, a > 0 and eca < 1. Then the

projection map FP defined by

IP(X)= {x - a(F(x) + z)} , x E D

is also Lipschitzian with modulus k(a) = V(1 - ac)2 + (aL)2 . If a <

2c/v/c2 +L 2 , then IP is a contraction and k attains its minimum value

kmin(a) =L/v/L2 + 2  for a= e/L 2 + C2 .

Proof

We have

- l(Y)11 2 = II- ci(F(x) + ex)}+ - {y - a(F(y) + E) +ll2

5 IJ{x - a(F(x) + e))- {y - a(f(y) + Ey) }112

,-,' .".•-,., . ,, . ,,, . .,:;; . ,,'.w , .- ,,.X , .:_,.: . -... ,-., .,., -,, ..-.-....... '. ..'....' ...... ,..
. t ' ' ', . ' " - "' € '., " ° . " . ." . " . % '' .' -. " . ' " ' . '" ' .' ,'A"-la. '' ' '



since projection on R is non-expansive. Hence,

IIIP(x)- lP(y)2 < II(x - y)(1 - ca) - a(F(z) - F(y)) l2

IIXr _ y11 2 (1 -ar) 2 + a21 F(x) - Fly) 12

- 2a(1 - a)(x - y)(F(x) - F(y)).

Since aE < I and < F(x) - F(y), x - y > > 0 from the monotonicity of F,

i!IP(x)- Ip(y)11 2 < IIX- y112 {(I -_ )2 + (aL)2}.

The other claims about k(a) are easy to verify. I

2.4 Theorem. Let F : 3V' R" be monotone and Lipschitzian with

modulus L. Let {n} be a sequence of positive reals, En 1 0. For n = 1, 2,...

let

*. 1P(X) = - an (F(x) + EnX)}+

* and form= 1, 2,... and x E R, let

IP (x) = IPn o ... o ]Pn (x) = x(n, m).

rn times

Suppose further that

a, En, k L , n En e(I k,).

E2 + L2, TT - L

For n =1, 2, ... , let-jn be defined by

Sz(n,m), where Ilx(n,m + 1) - z(n,m)l < n..
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Then the sequence {1jn I} is bounded if and only if NLCP(F) is solvable

and in this case, Y, -n , the least two-norm solution of NLCP(F)

Proof

From Proposition 2.3, IP,. is a contraction with modulus k, < 1. By the

contraction mapping principle, given any x(.'.

lrn IPM - z", LPn(zn) = zn.
j--00

Note that z' solves NLCP(F + enJ) uniquely. Since, by definition,

1Pn(x(n,m)) = x(n, m + 1)

we have

6, > 11x(n,m + 1) - x(n,m)II > I x(n,m) - - IIx(n,m + 1) - z'11

and

IIx(n,m - 1) - z'II = llP,,(x(n, m) - IP,(zn)l < kn . I1x(n,m) - z'l1

it follows that

6. > IIx(n,m + 1) - x(nm)I 1> (1 - k) lix(n,m) - II

and that

Ily -" ZnI < ...

. ,• .. . . . . . , . . . . ,
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The conclusions about {Y'} follow from [Br6zis, 1973] (see also [Subrama-

nian, 1985]). I

We remark that the last Theorem is a two-step process in the sense that

for a given E,,. the contraction IP,, is iterated m times until x(n,rm) is close

enough to the solution z" of NLCP(F + c,). One then takes a smaller

E, and the process repeats. Our aim now is to prove convergence for an

algorithm which combines both steps into a single step. We shall need the

following notions from the thery of summability.

2.5 Definition. An infirite matrix A = (Aij), i, j = 1, 2,.°., is said to be

convergence preserving if for any sequence {x,}, the sequence {y,' defined

by
00

= (2.6)
3=1

is well defined and limxn = limy,. We call {y,,} the A-transform of {x,}

and write y, = a(Ixn}).

The following Theorem is classical. Its proof may be found for instance

in [Peyerimhoff, 1969].

2.7 Theorem. (0. Toeptlitz). An infinite matrix A = (Aij), i, j 1, 2,...

is convergence preserving if and only if

(1) J'= !Aji = oi exists,

{c,} is bounded,

(2) limi( _'=I Aij) =1.

(3) lim, A, - 0.

%6%

5.
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We are now ready to prove the principal theorem of this paper.

2.8 Theorem. Let M be a positive semidefinite matrix. Assume that that

the sequences { and {E,} of positive reals are such that

00

-6n diverges,

00

S i- converges,
n=1 (2.9)

00

Z- tnn converges and

n=1

1, An= an

Suppose that k is the smallest positive integer satisfying

+1 <ILI(2.10).

Let B (Bij) be the infinite matrix whose n h row Bn is defined by

Bn = 1+k I2+k "in+k-- n Sn Sn. 0,-

where Sn j = -+ k. Let x° = 0 and having xn , determine xn+l from

x {(1n -n+k-n+k)xn-5n+k(Mxn + q)}+ (2.11).

Let {y'l} be the B-transform of {x', that is

y S i+kX i (2.12).

Then S(M, q) I {x n } is bounded. When this condition holds,

y Y* E 9(M, q).

' '. ". ". ---"," "," '. % ' " ,.. ,.' "".,..',".". ,'° ""% . .. ,, ~j'.k .' ,' ,' .'..,.,% '.", .. ',.- ..* o,. "" .. ' •". "- ",." -' ....--'%"



Proof

Assume that k satisfies (2.10). For notational convenience, we shall write

an =n-k, En n+k and p" =in-k.

" Obviuosly, the sequences {an}, {f} and {p} also satisfy the conditions

(2.13). We shall write

Fx = Mx -- q, Fx Fx + Enx.

Thus we can write (2.11) in the form

= xn+  { ae,)x' - aFXn}, (2.13).

We first assume that {XI} is bounded and show that in this case yn

y* E S(M, q) so that S(M, q) #0.

Assume then that {xn} is bounded. Clearly, FKj > 0 and K 2 > 0

such that I!x~I! < KI,

HF.xnlI = fIMx, + q + Enxh

_ (1 + flM lI) I - qj

< (1 -+ M!I)- K1 + IqI,

K 2.

%. . . . . . .
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Let x E R be arbitrary but fixed. Then from (2.13) we have

li~x" -- x1l = I(x' - t(Fxz))+ - X112

< I(X - a - Fn + 6 .X) 1 2

< II(x" -- ) 2 - 2a (Fxn)(Xn - X)
n K (2.14)

-2&,e~xn(x - x) + c (2.14)

Since M is positive semidefinite we also have

(F n) (X n
- X) (Fr)(x" - X).

Let

,K3 sup Iz"nj. j -j

From (2.14) we now get

2 22an(Fx)(x n - x) < jjx - 112 - IIx"+1 - x112 + 2a eK 3 + .

Summing this from I to k we obtain

k k k

Z(x an (Xn-z) IX 1z1-xH2- l~k,_Xl2 +2K 3 E ann+2 a2

Divide this last inequality by Sk and let k oo. From the assumed prop-

erties in (2.9) of the sequences {a}, {E} and from the definition of {y},

we now have

liminf < Fx, x-yk > > O.
k

..-- ,,, ' .,, , , , . . . . .'o.-o . ' -. °.' ° .' " .". -o , t .r z ~r . . . = ¢ P , N" %/
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Since y' is a convex combination of x 1, z 2 ,... , x  it follows that {xn}

bounded => {yn} is bounded. Hence {yn} has a limit point y- for which

<Fx, x - y* > > 0.

Since x E W n was arbitrary, y* solves LCP(M, q). This completes our proof

* that

{xn} bounded 3 S(M, q) 0 O.

Next we prove yn y

Since 3(M, q) :$ 0, choose z E S(M, q) arbitrary but fixed. By

Theorem 2.4.2, z satisfies

< Fx n , xn -z> > 0 (2.15)

since xn > 0. From (2.13) and (2.15) we have

I1Xn+ - z112 < I( ' - z) - a(Fxn + EXn)12

_< Ix - z112 - 2an(Fxn)(z, - z)

2an z(zX - z) +C 2

< iin - z112 + 2ancn iXn(X, - z)l + a2K 2 .

Define On (z) by

2n(e) 2Qnc IIX"IiIIz - zil + n. K2 (2.16)

and we now have

j n4 _ z111 < LXn _ zj 2 + On(Z) (2.17).
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Let S denote 3M, q) and let

zn= p,,z.T).

We are going to show that 3z such that

From (2.17) and the definition of zn

IIX n+I - z n+1 112 < IIX n+' - z 112 < IIX, -z"11
2 + #3,(Z).

Since Fn/3,n(z) converges, by [Cheng, 1981, Lemma 2.2.121, we can conclude

that

IIz n - z'11 converges. (2.18)

By parallelogram law, for m > 0,

IIzfm- zlI= 2iIx''+2ltnm+m - zII2 +,12 I ~~~ n- 112

411II n+m - (z n + zft+m)II 2.
2

Since 3 is convex, (z + z n+m )/2 E S9. Also, zIn+m is the closest point to

-4 Zf+m in 3. Hence,

11Z n m - z n1I2 < 2 1zft+M z n112 - -211Xn+M - z ~112. (2.19)

Letting z = zn in (2.17) and noting that zn is the closest point to z" i

5it follows that On (zn) 5 On,(Z) . Now let z = zn in (2.17) and use

induction to get

fl+Mf

-I ~ z nII 2 < 1X'n zn 112 + ~ 3(z), m > 0.
.7=ft

-~~~ I A- *L.A
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Substitute this in (2.19) and we have

-iz z 2  1x 21z"- z I

n-4-m

-211X n ' zn+m112 - 2 Zi(z). (2.20)
3=n

From (2.18) and the fact -- n S(z) converges, we have by letting n, m -- oc

in (2.20) that

11Z n+mn _ -*n 0

so that {z } is Cauchy. Since S is closed, 3 z* S such that zn -* z*.

We shall now show that yn - z- as well.

Since {yn} is also bounded, let y* be any of its limit points. Assume

that the subsequence y, converges to y*. From our proof earlier, y* E S.

Observe that

zJ =P-(Xj) =#- <xi - z j y* - z>< 0. (2.21)

Multiply (2.21) by a2 and sum from j = 1, 2,-.., nk to get

31

j= 1 j=l

Divide the last inequality by Sk to obtain

, = F zy  Y  I =" z  < 0. (2.22)

j=1 = 1

Notice however that

nnl Sftk 1 2~

%.k4 ~A.. .



14

is simply a subsequence of the B-transform of {z"}, that is of

{n} =

Since B satisfies all the conditions of Theorem 2.7, it is a convergence pre-

serving matrix. However, zn - z* so that both " and C', also converge

to z*. If we take limits as k - oo in (2.22), we get

<y *- , t,* - z*> < 0

so that y' = z*. But y* was any arbitrary limit point of {yn}. Hence

y n - z*. This completes our proof that

{x n } bounded 3 S(M, q) $ 0 and y'- z* E 3(M, q).

We now prove the converse, that is we shall assume that S(M, q) $ 0

and show that {xn} is bounded.

Recall from (2.10) that k satisfies

+2p, < L = 1+fIM1V

Hence there exists a, 0 < o < 1/2 for which
'A 1

~Vij7 -PkPk <  0 +- o)(' + INMD) := L

The function f(r),

f(r) := r

r( + o)(] + 1IMII) + II0
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is strictly increasing in [0, oo], lim, f(r) = L,. Thus 3 F > 0 such that for

r > f,

V/pk - 2-#k < f(F < f (r).

Since P, 0 and Pn+k = p-, we have for all n > 0 and r > f,

Vn + 2 Pn < f(jw) < f(r). (2.23)

By assumption, S $ 0. Let z = Pg(0), that is z is the least two-norm

solution of LCP(M, q). Define

1
r = max (f, 1I zI) +1.

Our aim is to show that

!Ix"-z _I< r, Vn > 0,

that is {z} is bounded and this would complete our proof.

We use induction.

For n = 0, I!x° - zII = Ilzil < ar < r.

Suppose now that IIz" - z11 < r. Let u, = jz" - z1I. From (2.13),

-u4. Iz'- H2 _ilxrn _ Z2
- - 2aC z(z - z)

- 2an(FXn)(zX - z) -t anz F -z"I 2 . (2.24)

inU(2.2U
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Since z E S, (Fz)(x n - z) > 0. Also if 1.1+ 1 _ An< , we are done. So

assume /. 1  > ju. From (2.24) we thus get

2QnC11 X,(.n _ Z) < ci'IIFzn + E~n 112l,

that is

X"(x" - z) < 2lix" + Cnx'l12. (2.25)
2

Since Ilx nil _ Ilx" - zll + Ilzll

< r + Orr

':; = (1 + oT),,

we have

IliFx + nll < IIMxq + q li + i

- IIM1 ll IIll + Iliqll + IIll

_ (1 + o)r (1 + IIMII) + lIqll

Vf(r)

-: say. (2.26)

*From (2.25) we now get

xn ( X- z) < P--" 2 ,

2
(X. z)(x - z) < 0 2 -(X" _ Z)

2

< P"1 + llzll" Ilx" zll
2

K ZIP
-,. % ,,r

- , , . .- . , , . , .s . . .. . ' - " , A , . . N . -, ,... . .. . . , , , , .. . . . ., . .
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Rewriting this last inequality,

2 Pn 2 +r~

An< - ra.
2

whence

21 - 2rap. -- p. 2 < 0.

Since An > 0, we must have

2ro + N/4r 2a 2 +8C2p,A~n <4 4

2 \4

and finally

An< rcr+ - /-2,. (2.27)

2

Again from the definition of Xn+ 1 in (2.13),

n+1 = Ix n+ 1 - Z11

_ - z - Cn(Fnxn)l!

< An.+ Cfn 1Fnxnji,

5 tn + Pn C, (2.28)

where we have used (2.26) and the fact a, < p,. If we use our estimate

of An from (2.27) in (2.28) we get

An.+ < ra- Vp + P n.
2

-X .*(
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Substituting for e from (2.26) and using (2.23) we finally get

An+ 1 < rc+ ( / + 2p,) r

f(r) r2 ff(r)

r
2

< r

since o < 1/2. Hence Pn+l < r. This completes our induction and also

*i the proof of the Theorem. |

2.29 Remark

Our proof showing that {yf} converges by considering z n = P(x,) is

patterned after [Baillon, 19751, who uses this technique to construct fixed

points of non-expansive maps. Notice also Baillon's use of the Ceshro matrix

C where Cij = 1/i for j < i. while Cij = 0 for j > i.

3. Application to NLCP(F)

* We shall now show that the proof of Theorem 2.8 can be used to construct

a solution of NLCP(F) when F is monotone and satisfies some regularity

conditions such as the distributed Slater constraint qualification [Mangasar-

ian and McLinden, 1985].

3.1 Definition. Let F: D C -%I 7 . We say that F satisfies the

distributed Slater constrainst qualification (DSCQ) if there exist p points

z 1 , z 2 ...... E D, nonnegative weights A1 , \2,\j A (Y, A, =) such

that jAjzj > 0 and t = i, A, wJ > 0 where wj -F(z').

al ' M ,

how=,-Mr-
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Mangasarian and McLinden have proved the following Theorem.

3.2 Theorem. Let F: D C R', ----, R C D and suppose that F is

monotone and continuous on D. Assume that F satisfies (DSCQ). Let

, "x >max (1, -,ib + E "\jziwi)'

j=l

C zz C R, ti'z < tH + -Y)

where A,. z3 , w3 , 4 and wb are as in (DSCQ). Then NLCP(F) is solvable

and has a solution z* such that tbz* < tbi + "7.

We shall now show that the technique used in the proof of Theorem 2.8

can be used to construct a solution of NLCP(F) guaranteed by Theorem

3.2.

3.3 Theorem. Assume that F satisfies the hypotheses of Theorem 3.2 and

let C be the compact convex set as defined in that Theorem. Let x= 0

(2 and given x" find from x" + I

X- n' + 1 X ncx F(x n) }

n

Let B be the Cisaro matrix with

Bn=(+1 1 "", 0 o , S sn=YZ1
S:' 2 ' nS, O, j=1

and let {yn}= B({x,}). Then yn converges to a solution of NLCP(F)

*Proof

*., We shall give only a brief outline. Since {x n} and hence {yn} are both

bounded, {y"} has a limit point, y. One uses the monotonicity of F to

.,..
.,,'' ,:'. . ..-, .. , :...," . a .".:.:,'. , .v. ." . K. ' . . '." ". .
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show that

o(F(y*,x -y*) 0, Vx E C.

Hence y* is a fixed point of the map x - PC(x - F(x)). However, Man-

gasarian and McLinden show that any such fixed point satisfies tby* <

tbi + -y. Hence y* solves NLCP(F). One can now show that y' - y,

by considering the projection z' of x' on .(F). |

3.4 Remarks

1. It is easy to see that Theorem 2.8 may be extended to the nonlinear

case if F is Lipschitzian. In this case JIM[I is replaced by the Lipschitz

constant of F in (2.10).

2. Unfortunately, from a computational point of view the fixed point

methods in general, and those considered in this paper in particular, are not

viable methods. They are extremely slow and particularly so in the vicinity

of a solution point since the step sizes taken in such a vicinity are extremely

small. Their slowness in part is also due to the fact that they do not utilize

special features of the matrix M in the case of LCP(M, q). Their real

utility is perhaps in generating good starting points for fast Newton-type

algorithms. However, the SOR methods are much faster than the fixed point

methods even for generation of starting points.
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